急性肺损伤治疗策略的现状与未来

薛磊

作者简介：海军军医大学A级优秀教员，副教授，硕士研究生导师。海军军医大学第二附属医院胸外科主任，任中华医学会胸外科分会青年委员会委员，上海市医学会胸外科分会委员。获2018年度、2019年度、2020年度上海市医学会专业分会优秀秘书。首任上海医学会“青年杰出”奖。入选上海市卫生健康委员会首批“医苑新星”青年医学人才培养资助计划。

【摘要】急性肺损伤（ALI）是由于多种病因导致的肺部损伤，可引起急性呼吸窘迫综合征（ARDS）。ARDS 是由炎症性肺水肿、严重的低氧血症、肺顺应性下降和弥漫性肺泡上皮及上皮细胞损伤为表现的临床综合征，是临床上常见的呼吸系统危重症，其发病机制复杂，病死率高。大量证据表明，即使患者幸存，其肺功能也严重受损，生活质量不佳。目前，除保护性机械通气、糖皮质激素治疗、液体管理措施外，可用于 ALI 的治疗手段相对有限。本文分析 ALI 治疗策略的现状和未来的发展方向，为 ALI 的临床治疗和后续研究提供参考，以期改善 ALI 患者的预后。

【关键词】急性肺损伤；机械通气；药物治疗；间充质干细胞；体外膜肺氧合


新型冠状病毒肺炎（COVID-19）疫情的全球流行使得急性肺损伤（acute lung injury, ALI）这一概念再次进入大众的视野。欧洲重症监护医学会（European Society of Intensive Care Medicine, ESICM）于2016年开展了一项国际性、多中心、前瞻性队列研究[1]，来自全球50个国家的459个ICU参与其中；研究结果显示，ICU住院患者 ALI 发病率为10％，使用机械通气的患者 ALI 发病率为23％，总体死亡率为40％，轻度、中度、重度 ALI 患者的死亡率分别为34％、9％、40％、46．1％。ALI 为全球公共卫生系统带来了巨大的挑战，其致病因素复杂，可分为直接因素和间接因素。直接因素包括肺炎、胃内容物误吸、化学物质吸入、肺挫伤等；间接因素包括肺毒性、严重创伤、输血、非心源性休克、体外循环手术、药物滥用等。感染是 ALI 的重要病因，据统计，肺部感染和肺外肺毒性在 ALI 所有诱因中的占比为75％[2]。ALI 发病过程可分为3个阶段：渗出期、增殖期、纤维化期。渗出期为致病因素作用于机体后24 h 内，肺泡巨噬细胞通过模式识别受体识别微生物成分或组织损伤，并分泌促炎细胞因子（如 IL-1β、TNF-α、IL-12）等，引起炎症因子级联爆发式反应，加重内皮和上皮损伤，增加微血管通透性，导致肺泡水肿，肺功能障碍，通气血流比例失调。增殖期主要表现为常驻成纤维细胞的瞬时扩增，即时基因形成，以及气道祖细胞和 II 型肺泡上皮细胞的增殖、分化。纤维化期的成纤维细胞分泌上皮生长因子和胶原蛋白，当胶原蛋白沉积过多时，即导致纤维化。针对以上病理特点，当前 ALI 的治疗
策略主要为机械通气治疗、药物治疗、干细胞治疗、体外膜肺氧合（ECMO）和中草药治疗等。ALI的治疗方法已取得一部分进展，但目前绝对有效、特异性高的疗法不多。

1 机械通气治疗

机械通气是临床上呼吸系统危重疾病的常规治疗方法，通过保持机体的供氧来维持生命，是当前治疗ALI的经典方法，其临床应用最为广泛，但也可加重肺损伤。因此，机械通气是“双刃剑”，临床上应注意既要达到治疗效果，又能减少不良反应。机械通气治疗ALI的关键是减少呼吸机相关肺损伤（ventilator induced lung injury，VILI）的发生。机械通气致VILI的两个主要机制：①直接损伤肺泡细胞，即促进细胞因子释放到肺泡间隙和血液循环；②机械转导机制，即机械通气期间反复拉伸肺泡上皮和血管内外皮，将机械刺激转化为生化反应，加重炎症反应。下文将从潮气量（VT）、潮气量、俯卧位通气等方面阐述如何减少VILI的产生。

1.1 低VT 肺保护性通气策略主要是通过降低VT和平台压（pplat）来减少对肺的过度拉伸，从而减少VILI的发生，改善患者预后。美国国家心脏血液研究所于2000年证实，与传统高VT通气相比，低VT通气可使死亡率下降9%。自此，肺保护性通气策略[即VT=6 mL/kg，pplat<30 cmH2O（1 cmH2O=0.098 kPa），合适的PEEP，允许性高碳酸血症]在临床上得到广泛应用[2]。近年来，有学者发现在肺保护通气条件下患者已经承受了VILI[3]。超级肺保护通气联合体外二氧化碳清除（extracorporeal CO2 removal，ECCO2R）治疗通过降低机械通气时的VT（3~4 mL/kg），pplat、呼吸频率（RR），可进一步减少VILI的发生。同时，ECCO2R可避免通气量过少引起的高碳酸血症和呼吸性酸中毒发生。因此，ECCO2R逐渐成为ALI呼吸支持治疗的研究热点。近年来，ECCO2R技术获得了长足发展，体外回路材料的生物相容性不断提高，双腔肝素涂层导管和超声引导下导管插入技术等的应用大大减少了ECCO2R所致的出血等并发症的发生。尽管ECCO2R在ALI治疗上表现出巨大潜力，但相对繁琐的操作限制了其在临床上的广泛应用，而且ECCO2R的有效性及其益处仍待进一步高质量的循证医学证据支持。

1.2 肺复张 肺复张的基本原理是通过短暂升高跨肺压力重新打开先前塌陷的肺泡，以促进肺泡复张，并通过适当的PEEP维持肺泡开放状态，以改善氧合、减少呼吸过程中肺泡反复塌陷和开放所致的VILI发生。Pensier等[4]的一项META分析结果显示，尽管肺复张可显著改善患者氧合，且减少患者抢救次数，但其在改善患者28 d死亡率方面的效果并不显著。当前学界认为，肺复张策略对患者是否有益主要取决于肺可复张性。然而，目前临床医师尚无容易获得且可靠的工具用于床边评估肺复张情况。CT已被用于肺复张的评估研究，但考虑到患者存在转运风险，其临床应用受限。电阻抗断层扫描在评估肺复张方面具有巨大潜力[5]。如果患者伴有肺气肿、肺纤维化等影响肺顺应性的基础病变，肺复张对提高氧合指标的帮助有限。

1.3 俯卧位通气 俯卧位通气实际上是肺复张策略的一种，通过改变肺水肿重力依赖区域，降低肺充气区域的不均一性，促进塌陷的肺泡复张，减少死腔样通气，从而改善患者氧合及预后。2013年Guérin等[6]发现，氧合指数（PaO2/FiO2）<150 mmHg（1 mmHg=0.133 kPa）的患者每天俯卧通气至少16 h，可使90 d死亡率从41.0%降至23.6%，且无实质性不良影响。2017—2019年，美国胸科学会、ESICM、法国重症监护医学学会相继将俯卧位通气纳入成人急性呼吸窘迫综合征（acute respiratory distress syndrome，ARDS）患者机械通气临床实践指南，提出PaO2/FiO2<150 mmHg的ARDS患者应早期采用俯卧位治疗，每天治疗时间需≥12 h，目前已被逐渐成为临床治疗ALI的共识。但在临床实践中，俯卧位通气对于医护工作的要求很高，需占用较多的人力资源，故对集中处理大批量危重患者的挑战很大。

2 药物治疗

2.1 他汀类药物 他汀类药物作为羟甲基戊二酰辅酶A还原酶抑制剂，是人们熟知的有效降血脂药物。在脂多糖致肺损伤后，他汀类药物可促进中性粒细胞凋亡，具有显著减轻肺部及全身炎症的作用。Craig等[7]开展的一项随机临床试验不仅证实了他汀类药物治疗ARDS的安全性，且发现他汀类药物可显著改善患者的肺功能障碍。
近年来，有关在ARDS（急性呼吸窘迫综合征）治疗中应用NMB（神经肌肉阻滞剂）的研究越来越多。据相关文献报道，使用NMB可以减少机械通气时间，降低患者感染风险，改善患者呼吸功能，提高生存率。然而，关于NMB的具体使用时机和剂量仍有待进一步研究。

3 干细胞治疗

间充质干细胞（mesenchymal stem cell, MSC）在ALI（急性肺损伤）和ARDS（急性呼吸窘迫综合征）治疗中显示出潜在的治疗价值。MSC具有多向分化潜能、免疫调节、低免疫原性等特性，可以促进肺组织修复和功能恢复。随着干细胞研究的深入，MSC在治疗ARDS中的作用逐渐被认可。

ECMO

ECMO（体外膜肺氧合）是通过提供足够的气体交换，快速纠正患者低氧血症和高碳酸血症，显著改善患者呼吸窘迫，从而减少患者呼吸机使用时间和机械通气相关并发症。ECMO可以用于ARDS、COPD等严重呼吸功能衰竭的患者。但ECMO的治疗效果仍需进一步研究和评估。

尽管ECMO在临床应用中应用越来越广泛，但其改进空间也很大，如对其进行出血倾向否要补充抗凝剂及抗凝的挑战方案等尚存争议。 Lebreton 等[24]提出，在ECMO环路中增加细胞吸附剂（可吸附血液中的细胞因子），可显著减少患者血清中的IL-6等炎性因子。关于该策略是否可以通过抑制炎症反应来改善患者预后，则有待于正在进行的随机，多中心对照试验进一步证实。

5 中草药治疗

中草药及其有效成分可针对ALI发病过程中炎症反应、氧化应激、细胞凋亡等多环节进行阻断，具有多途径、多靶点的特点；同时，中草药及其有效成分作为天然提取物，具有安全、不良反应小的优势。近年来，一大批中草药包括紫杉醇、银杏内酯C、柚皮苷、川芎嗪、灵芝多糖等在动物实验中表现出显著的抗炎、抗氧化效应，为ALI治疗研究提供了新思路、新方向。但中药制剂也有其局限性，当前大部分中药制剂还停留在动物实验阶段，其有效性尚待进一步临床试验明确。循证医学证据的缺乏限制了中草药的应用，希望研究者能够提取出有效成分，并证实其有效性，从而为中草药治疗ALI的应用提供依据。

6 总 结

在全球范围内，ALI的发病率、死亡率仍居高不下，目前尚未发现关于ALI的特效疗法，给世界各国带来了沉重的公共卫生负担。但经过半个多世纪对ALI的研究和探索，人们对ALI的发病机制、病理生理学特点、临床表型等的认识正在不断进步，关于ALI的治疗方法也在不断发展，ECMO、中药制剂、干细胞治疗等方法表现出巨大潜力。有学者应用计算机技术合成新型的小分子化合物，也有学者提出精准医疗的概念（即将ALI这一异质性综合征进行分类、分层，根据患者自身ALI表型及其严重程度，实现个体化治疗），这些均为肺损伤治疗的有益尝试。相信随着对ALI研究的不断深入，其诊治方法一定会取得突破性进展。

参考文献


Patients with severe adult respiratory distress syndrome (ARDS) have a high mortality. Inefficacy of high-dose methylprednisolone in preventing parenchymal lung injury and improving mortality in patients with septic shock [7].

The role of corticosteroid therapy for coronavirus disease 2019 (COVID-19) [8].

Effect of Dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19: the CoDEX randomized clinical trial [9].

Neuromuscular blockers in early acute respiratory distress syndrome [10].


Mesenchymal stem/stromal cells therapy for sepsis and acute respiratory distress syndrome [12].

Effect of human umbilical cord-derived mesenchymal stem cells on lung damage in severe COVID-19 patients: a randomized, double-blind, placebo-controlled phase 2 trial [13].

Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomized phase 2a safety trial [14].

Extracorporeal membrane oxygenation for pandemic influenza A (H1N1)-induced acute respiratory distress syndrome: a cohort study and propensity-matched analysis [15].

Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial [16].

Mesenchymal stem/stromal cells therapy for sepsis and acute respiratory distress syndrome [17].

Effect of human umbilical cord-derived mesenchymal stem cells on lung damage in severe COVID-19 patients: a randomized, double-blind, placebo-controlled phase 2 trial [18].

Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomized phase 2a safety trial [19].

Extracorporeal membrane oxygenation for pandemic influenza A (H1N1)-induced acute respiratory distress syndrome: a cohort study and propensity-matched analysis [20].

Extracorporeal membrane oxygenation for severe adult respiratory distress syndrome [21].

Extracorporeal membrane oxygenation for severe adult respiratory distress syndrome [22].

Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome [23].

Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome [24].

Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome [25].

Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome [26].

Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome [27].

Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome [28].

Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome [29].

Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome [30].

Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome [31].

Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome [32].